app_imu.cpp 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. /*
  2. * app_imu.cpp
  3. *
  4. * Created on: Nov 23, 2023
  5. * Author: juraj
  6. */
  7. #include "app_imu.h"
  8. #include "IcmSpiManager.h"
  9. #include "icm20948.h"
  10. extern SPI_HandleTypeDef hspi1;
  11. nBusAppInterface_t mcu_spi_driver = {
  12. mcu_spi_init,
  13. mcu_spi_reset,
  14. mcu_spi_getType,
  15. mcu_spi_getSensorCount,
  16. mcu_spi_getData,
  17. mcu_spi_setData,
  18. mcu_spi_hasParam,
  19. mcu_spi_getParam,
  20. mcu_spi_setParam,
  21. mcu_spi_start,
  22. mcu_spi_stop,
  23. mcu_spi_readData,
  24. NULL, //mcu_spi_store,
  25. mcu_spi_calibrate,
  26. NULL, //getSensorFormat
  27. NULL, //find
  28. NULL //deviceReady
  29. };
  30. axisesI *sensor_dataI; // int16 values
  31. Icm20948 *sensor;
  32. IcmSpiManager *manager;
  33. nBusAppInterface_t *getImuDriver(){
  34. return &mcu_spi_driver;
  35. }
  36. static accel_samplerate getAccelParamSamplerate(int32_t value){
  37. switch(value){
  38. case ACCEL_samplerate_0_27Hz:
  39. case ACCEL_samplerate_0_55Hz:
  40. case ACCEL_samplerate_102_3Hz:
  41. case ACCEL_samplerate_140_6Hz:
  42. case ACCEL_samplerate_17_6Hz:
  43. case ACCEL_samplerate_187_5Hz:
  44. case ACCEL_samplerate_1_1Hz:
  45. case ACCEL_samplerate_281_3Hz:
  46. case ACCEL_samplerate_2_2Hz:
  47. case ACCEL_samplerate_35_2Hz:
  48. case ACCEL_samplerate_48_9Hz:
  49. case ACCEL_samplerate_4_4Hz:
  50. case ACCEL_samplerate_562_5Hz:
  51. case ACCEL_samplerate_70_3Hz:
  52. case ACCEL_samplerate_8_8Hz:
  53. return (accel_samplerate)value;
  54. }
  55. return ACCEL_samplerate_None;
  56. }
  57. static accel_full_scale getAccelParamFullScale(int32_t value){
  58. switch(value){
  59. case ACCEL_FS_2g:
  60. case ACCEL_FS_4g:
  61. case ACCEL_FS_8g:
  62. case ACCEL_FS_16g:
  63. return (accel_full_scale)value;
  64. }
  65. return ACCEL_FS_NoneG;
  66. }
  67. static accel_dlp_cfg getAccelParamLowPassFilter(int32_t value){
  68. switch(value){
  69. case ACCEL_lpf_005_7Hz:
  70. case ACCEL_lpf_011_5Hz:
  71. case ACCEL_lpf_023_9Hz:
  72. case ACCEL_lpf_050_4Hz:
  73. case ACCEL_lpf_114_4Hz:
  74. case ACCEL_lpf_246Hz:
  75. case ACCEL_lpf_473Hz:
  76. case ACCEL_lpf_OFF:
  77. return (accel_dlp_cfg)value;
  78. }
  79. return ACCEL_lpf_None;
  80. }
  81. static gyro_samplerate getGyroParamSamplerate(int32_t value){
  82. switch(value){
  83. case GYRO_samplerate_004_4Hz:
  84. case GYRO_samplerate_017_3Hz:
  85. case GYRO_samplerate_017_6Hz:
  86. case GYRO_samplerate_034_1Hz:
  87. case GYRO_samplerate_035_2Hz:
  88. case GYRO_samplerate_048_9Hz:
  89. case GYRO_samplerate_066_2Hz:
  90. case GYRO_samplerate_070_3Hz:
  91. case GYRO_samplerate_102_3Hz:
  92. case GYRO_samplerate_125_0Hz:
  93. case GYRO_samplerate_140_6Hz:
  94. case GYRO_samplerate_187_5Hz:
  95. case GYRO_samplerate_225_0Hz:
  96. case GYRO_samplerate_281_3Hz:
  97. case GYRO_samplerate_375_0Hz:
  98. case GYRO_samplerate_562_5Hz:
  99. return (gyro_samplerate)value;
  100. }
  101. return GYRO_samplerate_None;
  102. }
  103. static gyro_full_scale getGyroParamFullScale(int32_t value){
  104. switch(value){
  105. case GYRO_FS_1000dps:
  106. case GYRO_FS_2000dps:
  107. case GYRO_FS_250dps:
  108. case GYRO_FS_500dps:
  109. return (gyro_full_scale)value;
  110. }
  111. return GYRO_FS_None;
  112. }
  113. static gyro_dlp_cfg getGyroParamLowPassFilter(int32_t value){
  114. switch(value){
  115. case GYRO_low_pass_OFF:
  116. case GYRO_lpf_005_7Hz:
  117. case GYRO_lpf_011_6Hz:
  118. case GYRO_lpf_023_9Hz:
  119. case GYRO_lpf_051_2Hz:
  120. case GYRO_lpf_119_5Hz:
  121. case GYRO_lpf_151_8Hz:
  122. case GYRO_lpf_196_6Hz:
  123. case GYRO_lpf_361_4Hz:
  124. return (gyro_dlp_cfg)value;
  125. }
  126. return GYRO_lpf_None;
  127. }
  128. void mcu_spi_init(void *hw_interface, void *hw_config){
  129. manager = new IcmSpiManager((SPI_HandleTypeDef*)hw_interface); // TODO toto ma byt o uroven vyssie, ale je to c subor
  130. sensor = new Icm20948(manager, (icm20948_Config*)hw_config);
  131. }
  132. void mcu_spi_reset(){
  133. sensor->Reset();
  134. }
  135. nBus_statusType_t mcu_spi_start(){
  136. sensor->Start();
  137. return STATUS_SUCCESS;
  138. }
  139. nBus_statusType_t mcu_spi_stop(){
  140. sensor->Stop();
  141. return STATUS_SUCCESS;
  142. }
  143. void mcu_spi_readData(void){
  144. sensor->Read();
  145. }
  146. nBus_sensorType_t mcu_spi_getType(uint8_t sensor_index){
  147. nBus_sensorCount_t sc = mcu_spi_getSensorCount();
  148. if (sensor_index > sc.read_only_count) {
  149. return TYPE_UNKNOWN;
  150. }
  151. if (sensor_index == 1) {
  152. return TYPE_ACCELEROMETER;
  153. }
  154. if (sensor_index == 2) {
  155. return TYPE_GYROSCOPE;
  156. }
  157. return TYPE_UNKNOWN;
  158. }
  159. nBus_sensorCount_t mcu_spi_getSensorCount(){
  160. nBus_sensorCount_t sc = {2,0};
  161. return sc;
  162. }
  163. uint8_t mcu_spi_getData(uint8_t sensor_index, uint8_t *data){
  164. if(sensor_index == 1){
  165. sensor_dataI = sensor->accSensor->GetData();
  166. }
  167. if(sensor_index == 2){
  168. sensor_dataI = sensor->gyroSensor->GetData();
  169. }
  170. data[0] = sensor_index;
  171. data[1] = (uint8_t)sensor_dataI->x & 0xFF;
  172. data[2] = (uint8_t)((sensor_dataI->x >> 8) & 0xFF);
  173. data[3] = (uint8_t)sensor_dataI->y & 0xFF;
  174. data[4] = (uint8_t)((sensor_dataI->y >> 8) & 0xFF);
  175. data[5] = (uint8_t)sensor_dataI->z & 0xFF;
  176. data[6] = (uint8_t)((sensor_dataI->z >> 8) & 0xFF);
  177. return 7;
  178. }
  179. nBus_statusType_t mcu_spi_setData(uint8_t *data, uint8_t count, uint8_t *response){
  180. return STATUS_FAIL;
  181. }
  182. int32_t mcu_spi_getParam(uint8_t sensor_index, nBus_param_t param){
  183. uint32_t param_value = PARAM_VALUE_NONE;
  184. // to module
  185. if(sensor_index == 0) {
  186. return PARAM_VALUE_NONE;
  187. }
  188. if(sensor_index == 1) {
  189. switch(param){
  190. case PARAM_SAMPLERATE:
  191. param_value = sensor->accSensor->GetSampleRate();
  192. break;
  193. case PARAM_RANGE:
  194. param_value = sensor->accSensor->GetRange();
  195. break;
  196. case PARAM_FILTER:
  197. param_value = sensor->accSensor->GetLowPassFilter();
  198. break;
  199. default:
  200. param_value = PARAM_VALUE_NONE;
  201. }
  202. }
  203. if(sensor_index == 2) {
  204. switch(param){
  205. case PARAM_SAMPLERATE:
  206. param_value = sensor->gyroSensor->GetSampleRate();
  207. break;
  208. case PARAM_RANGE:
  209. param_value = sensor->gyroSensor->GetRange();
  210. break;
  211. case PARAM_FILTER:
  212. param_value = sensor->gyroSensor->GetLowPassFilter();
  213. break;
  214. default:
  215. param_value = PARAM_VALUE_NONE;
  216. }
  217. }
  218. return param_value;
  219. }
  220. uint8_t mcu_spi_hasParam(uint8_t sensor_index, nBus_param_t param){
  221. if(sensor_index == 1 || sensor_index == 2){
  222. switch(param){
  223. case PARAM_SAMPLERATE:
  224. case PARAM_RANGE:
  225. case PARAM_FILTER:
  226. return 1;
  227. default:
  228. return 0;
  229. }
  230. return 0;
  231. }
  232. return 0;
  233. }
  234. nBus_statusType_t mcu_spi_setParam(uint8_t sensor_index, nBus_param_t param, int32_t value) {
  235. // to module
  236. if(sensor_index == 0) {
  237. return STATUS_NOT_SUPPORTED;
  238. }
  239. if(sensor_index == 1) {
  240. switch(param){
  241. case PARAM_SAMPLERATE:
  242. {
  243. accel_samplerate sr = getAccelParamSamplerate(value);
  244. if(sr != ACCEL_samplerate_None) {
  245. sensor->accSensor->SetSampleRate(sr);
  246. } else {
  247. return STATUS_NOT_SUPPORTED;
  248. }
  249. }
  250. break;
  251. case PARAM_RANGE:
  252. {
  253. accel_full_scale fs = getAccelParamFullScale(value);
  254. if(fs != ACCEL_FS_NoneG) {
  255. sensor->accSensor->SetRange(fs);
  256. } else {
  257. return STATUS_NOT_SUPPORTED;
  258. }
  259. }
  260. break;
  261. case PARAM_FILTER:
  262. {
  263. accel_dlp_cfg lpf = getAccelParamLowPassFilter(value);
  264. if(lpf != ACCEL_lpf_None) {
  265. sensor->accSensor->SetLowPassFilter(lpf);
  266. } else {
  267. return STATUS_NOT_SUPPORTED;
  268. }
  269. }
  270. break;
  271. default:
  272. return STATUS_NOT_SUPPORTED;
  273. }
  274. }
  275. if(sensor_index == 2) {
  276. switch(param){
  277. case PARAM_SAMPLERATE:
  278. {
  279. gyro_samplerate sr = getGyroParamSamplerate(value);
  280. if(sr != GYRO_samplerate_None) {
  281. sensor->gyroSensor->SetSampleRate(sr);
  282. } else {
  283. return STATUS_NOT_SUPPORTED;
  284. }
  285. }
  286. break;
  287. case PARAM_RANGE:
  288. {
  289. gyro_full_scale fs = getGyroParamFullScale(value);
  290. if(fs != GYRO_FS_None) {
  291. sensor->gyroSensor->SetRange(fs);
  292. } else {
  293. return STATUS_NOT_SUPPORTED;
  294. }
  295. }
  296. break;
  297. case PARAM_FILTER:
  298. {
  299. gyro_dlp_cfg lpf = getGyroParamLowPassFilter(value);
  300. if(lpf != GYRO_lpf_None) {
  301. sensor->gyroSensor->SetLowPassFilter(lpf);
  302. } else {
  303. return STATUS_NOT_SUPPORTED;
  304. }
  305. }
  306. break;
  307. default:
  308. return STATUS_NOT_SUPPORTED;
  309. }
  310. }
  311. return STATUS_SUCCESS;
  312. }
  313. /**
  314. * @param sebslaveIndex sensorAccIndex, sensorGyroIndex, sensorAll
  315. */
  316. nBus_statusType_t mcu_spi_calibrate(uint8_t subslaveIndex){
  317. uint8_t wasReady = sensor->IsReady();
  318. sensor->Stop();
  319. nBus_statusType_t success = STATUS_SUCCESS;
  320. if (subslaveIndex == (uint8_t) sensorAccIndex){
  321. sensor->accSensor->Calibrate();
  322. success = STATUS_FAIL;
  323. }
  324. if (subslaveIndex == (uint8_t) sensorGyroIndex){
  325. sensor->gyroSensor->Calibrate();
  326. success = STATUS_FAIL;
  327. }
  328. // if (subslaveIndex == sensorMagIndex){
  329. // sensor->magSensor->Calibrate();
  330. // }
  331. if (subslaveIndex == (uint8_t) sensorAll){
  332. sensor->accSensor->Calibrate();
  333. sensor->gyroSensor->Calibrate();
  334. // sensor->magSensor->Calibrate();
  335. success = STATUS_FAIL;
  336. }
  337. if (wasReady !=0 ) {
  338. sensor->Start();
  339. }
  340. return success;
  341. }
  342. /*
  343. uint8_t mcu_spi_store(void){
  344. return 0;
  345. }
  346. */