app_imu.cpp 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. /*
  2. * app_imu.cpp
  3. *
  4. * Created on: Nov 23, 2023
  5. * Author: juraj
  6. */
  7. #include "app_imu.h"
  8. #include "IcmSpiManager.h"
  9. #include "icm20948.h"
  10. extern SPI_HandleTypeDef hspi1;
  11. nBusAppInterface_t mcu_spi_driver = {
  12. mcu_spi_init,
  13. mcu_spi_reset,
  14. mcu_spi_getType,
  15. mcu_spi_getSensorCount,
  16. mcu_spi_getData,
  17. mcu_spi_setData,
  18. mcu_spi_hasParam,
  19. mcu_spi_getParam,
  20. mcu_spi_setParam,
  21. mcu_spi_start,
  22. mcu_spi_stop,
  23. mcu_spi_readData,
  24. //mcu_spi_store,
  25. };
  26. axisesI *sensor_dataI; // int16 values
  27. Icm20948 *sensor;
  28. IcmSpiManager *manager;
  29. nBusAppInterface_t *getImuDriver(){
  30. return &mcu_spi_driver;
  31. }
  32. static accel_samplerate getAccelParamSamplerate(int32_t value){
  33. switch(value){
  34. case ACCEL_samplerate_0_27Hz:
  35. case ACCEL_samplerate_0_55Hz:
  36. case ACCEL_samplerate_102_3Hz:
  37. case ACCEL_samplerate_140_6Hz:
  38. case ACCEL_samplerate_17_6Hz:
  39. case ACCEL_samplerate_187_5Hz:
  40. case ACCEL_samplerate_1_1Hz:
  41. case ACCEL_samplerate_281_3Hz:
  42. case ACCEL_samplerate_2_2Hz:
  43. case ACCEL_samplerate_35_2Hz:
  44. case ACCEL_samplerate_48_9Hz:
  45. case ACCEL_samplerate_4_4Hz:
  46. case ACCEL_samplerate_562_5Hz:
  47. case ACCEL_samplerate_70_3Hz:
  48. case ACCEL_samplerate_8_8Hz:
  49. return (accel_samplerate)value;
  50. }
  51. return ACCEL_samplerate_None;
  52. }
  53. static accel_full_scale getAccelParamFullScale(int32_t value){
  54. switch(value){
  55. case ACCEL_FS_2g:
  56. case ACCEL_FS_4g:
  57. case ACCEL_FS_8g:
  58. case ACCEL_FS_16g:
  59. return (accel_full_scale)value;
  60. }
  61. return ACCEL_FS_NoneG;
  62. }
  63. static accel_dlp_cfg getAccelParamLowPassFilter(int32_t value){
  64. switch(value){
  65. case ACCEL_lpf_005_7Hz:
  66. case ACCEL_lpf_011_5Hz:
  67. case ACCEL_lpf_023_9Hz:
  68. case ACCEL_lpf_050_4Hz:
  69. case ACCEL_lpf_114_4Hz:
  70. case ACCEL_lpf_246Hz:
  71. case ACCEL_lpf_473Hz:
  72. case ACCEL_lpf_OFF:
  73. return (accel_dlp_cfg)value;
  74. }
  75. return ACCEL_lpf_None;
  76. }
  77. static gyro_samplerate getGyroParamSamplerate(int32_t value){
  78. switch(value){
  79. case GYRO_samplerate_004_4Hz:
  80. case GYRO_samplerate_017_3Hz:
  81. case GYRO_samplerate_017_6Hz:
  82. case GYRO_samplerate_034_1Hz:
  83. case GYRO_samplerate_035_2Hz:
  84. case GYRO_samplerate_048_9Hz:
  85. case GYRO_samplerate_066_2Hz:
  86. case GYRO_samplerate_070_3Hz:
  87. case GYRO_samplerate_102_3Hz:
  88. case GYRO_samplerate_125_0Hz:
  89. case GYRO_samplerate_140_6Hz:
  90. case GYRO_samplerate_187_5Hz:
  91. case GYRO_samplerate_225_0Hz:
  92. case GYRO_samplerate_281_3Hz:
  93. case GYRO_samplerate_375_0Hz:
  94. case GYRO_samplerate_562_5Hz:
  95. return (gyro_samplerate)value;
  96. }
  97. return GYRO_samplerate_None;
  98. }
  99. static gyro_full_scale getGyroParamFullScale(int32_t value){
  100. switch(value){
  101. case GYRO_FS_1000dps:
  102. case GYRO_FS_2000dps:
  103. case GYRO_FS_250dps:
  104. case GYRO_FS_500dps:
  105. return (gyro_full_scale)value;
  106. }
  107. return GYRO_FS_None;
  108. }
  109. static gyro_dlp_cfg getGyroParamLowPassFilter(int32_t value){
  110. switch(value){
  111. case GYRO_low_pass_OFF:
  112. case GYRO_lpf_005_7Hz:
  113. case GYRO_lpf_011_6Hz:
  114. case GYRO_lpf_023_9Hz:
  115. case GYRO_lpf_051_2Hz:
  116. case GYRO_lpf_119_5Hz:
  117. case GYRO_lpf_151_8Hz:
  118. case GYRO_lpf_196_6Hz:
  119. case GYRO_lpf_361_4Hz:
  120. return (gyro_dlp_cfg)value;
  121. }
  122. return GYRO_lpf_None;
  123. }
  124. void mcu_spi_init(void *hw_interface, void *hw_config){
  125. manager = new IcmSpiManager((SPI_HandleTypeDef*)hw_interface); // TODO toto ma byt o uroven vyssie, ale je to c subor
  126. sensor = new Icm20948(manager, (icm20948_Config*)hw_config);
  127. }
  128. void mcu_spi_reset(){
  129. sensor->Reset();
  130. }
  131. void mcu_spi_start(){
  132. sensor->Start();
  133. }
  134. void mcu_spi_stop(){
  135. sensor->Stop();
  136. }
  137. void mcu_spi_readData(void){
  138. sensor->Read();
  139. }
  140. nBus_sensorType_t mcu_spi_getType(uint8_t sensor_index){
  141. if (sensor_index > mcu_spi_getSensorCount())
  142. return TYPE_UNKNOWN;
  143. if (sensor_index == 1)
  144. return TYPE_ACCELEROMETER;
  145. if (sensor_index == 2)
  146. return TYPE_GYROSCOPE;
  147. return TYPE_UNKNOWN;
  148. }
  149. uint8_t mcu_spi_getSensorCount(){
  150. return 2;
  151. }
  152. uint8_t mcu_spi_getData(uint8_t sensor_index, uint8_t *data){
  153. if(sensor_index == 1){
  154. sensor_dataI = sensor->accSensor->GetData();
  155. }
  156. if(sensor_index == 2){
  157. sensor_dataI = sensor->gyroSensor->GetData();
  158. }
  159. data[0] = sensor_index;
  160. data[1] = (uint8_t)sensor_dataI->x & 0xFF;
  161. data[2] = (uint8_t)((sensor_dataI->x >> 8) & 0xFF);
  162. data[3] = (uint8_t)sensor_dataI->y & 0xFF;
  163. data[4] = (uint8_t)((sensor_dataI->y >> 8) & 0xFF);
  164. data[5] = (uint8_t)sensor_dataI->z & 0xFF;
  165. data[6] = (uint8_t)((sensor_dataI->z >> 8) & 0xFF);
  166. return 7;
  167. }
  168. uint8_t mcu_spi_setData(uint8_t *data){
  169. return 1; // ILLEGAL_FUNCTION;
  170. }
  171. int32_t mcu_spi_getParam(uint8_t sensor_index, nBus_param_t param){
  172. uint32_t param_value = PARAM_VALUE_NONE;
  173. // to module
  174. if(sensor_index == 0) {
  175. return PARAM_VALUE_NONE;
  176. }
  177. if(sensor_index == 1) {
  178. switch(param){
  179. case PARAM_SAMPLERATE:
  180. param_value = sensor->accSensor->GetSampleRate();
  181. break;
  182. case PARAM_RANGE:
  183. param_value = sensor->accSensor->GetRange();
  184. break;
  185. case PARAM_FILTER:
  186. param_value = sensor->accSensor->GetLowPassFilter();
  187. break;
  188. default:
  189. param_value = PARAM_VALUE_NONE;
  190. }
  191. }
  192. if(sensor_index == 2) {
  193. switch(param){
  194. case PARAM_SAMPLERATE:
  195. param_value = sensor->gyroSensor->GetSampleRate();
  196. break;
  197. case PARAM_RANGE:
  198. param_value = sensor->gyroSensor->GetRange();
  199. break;
  200. case PARAM_FILTER:
  201. param_value = sensor->gyroSensor->GetLowPassFilter();
  202. break;
  203. default:
  204. param_value = PARAM_VALUE_NONE;
  205. }
  206. }
  207. return param_value;
  208. }
  209. uint8_t mcu_spi_hasParam(uint8_t sensor_index, nBus_param_t param){
  210. if(sensor_index == 1 || sensor_index == 2){
  211. switch(param){
  212. case PARAM_SAMPLERATE:
  213. case PARAM_RANGE:
  214. case PARAM_FILTER:
  215. return 1;
  216. default:
  217. return 0;
  218. }
  219. return 0;
  220. }
  221. return 0;
  222. }
  223. nBus_param_t mcu_spi_setParam(uint8_t sensor_index, nBus_param_t param, int32_t value) {
  224. // to module
  225. if(sensor_index == 0) {
  226. return PARAM_NONE;
  227. }
  228. if(sensor_index == 1) {
  229. switch(param){
  230. case PARAM_SAMPLERATE:
  231. {
  232. accel_samplerate sr = getAccelParamSamplerate(value);
  233. if(sr != ACCEL_samplerate_None) {
  234. sensor->accSensor->SetSampleRate(sr);
  235. } else {
  236. return PARAM_NONE;
  237. }
  238. }
  239. break;
  240. case PARAM_RANGE:
  241. {
  242. accel_full_scale fs = getAccelParamFullScale(value);
  243. if(fs != ACCEL_FS_NoneG) {
  244. sensor->accSensor->SetRange(fs);
  245. } else {
  246. return PARAM_NONE;
  247. }
  248. }
  249. break;
  250. case PARAM_FILTER:
  251. {
  252. accel_dlp_cfg lpf = getAccelParamLowPassFilter(value);
  253. if(lpf != ACCEL_lpf_None) {
  254. sensor->accSensor->SetLowPassFilter(lpf);
  255. } else {
  256. return PARAM_NONE;
  257. }
  258. }
  259. break;
  260. default:
  261. return PARAM_NONE;
  262. }
  263. }
  264. if(sensor_index == 2) {
  265. switch(param){
  266. case PARAM_SAMPLERATE:
  267. {
  268. gyro_samplerate sr = getGyroParamSamplerate(value);
  269. if(sr != GYRO_samplerate_None) {
  270. sensor->gyroSensor->SetSampleRate(sr);
  271. } else {
  272. return PARAM_NONE;
  273. }
  274. }
  275. break;
  276. case PARAM_RANGE:
  277. {
  278. gyro_full_scale fs = getGyroParamFullScale(value);
  279. if(fs != GYRO_FS_None) {
  280. sensor->gyroSensor->SetRange(fs);
  281. } else {
  282. return PARAM_NONE;
  283. }
  284. }
  285. break;
  286. case PARAM_FILTER:
  287. {
  288. gyro_dlp_cfg lpf = getGyroParamLowPassFilter(value);
  289. if(lpf != GYRO_lpf_None) {
  290. sensor->gyroSensor->SetLowPassFilter(lpf);
  291. } else {
  292. return PARAM_NONE;
  293. }
  294. }
  295. break;
  296. default:
  297. return PARAM_NONE;
  298. }
  299. }
  300. return param;
  301. }
  302. /*
  303. uint8_t mcu_spi_store(void){
  304. return 0;
  305. }
  306. */