nbus_app.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. #include "nbus_app.h"
  2. #include <string.h>
  3. nBus_TypeDef nBus;
  4. static uint8_t const crc8x_table[] = {
  5. 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D, 0x70, 0x77, 0x7E,
  6. 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB,
  7. 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD, 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8,
  8. 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD, 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6,
  9. 0xE3, 0xE4, 0xED, 0xEA, 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D,
  10. 0x9A, 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A, 0x57, 0x50,
  11. 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, 0x89, 0x8E, 0x87, 0x80, 0x95,
  12. 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4, 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC,
  13. 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4, 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F,
  14. 0x58, 0x4D, 0x4A, 0x43, 0x44, 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A,
  15. 0x33, 0x34, 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63, 0x3E,
  16. 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, 0xAE, 0xA9, 0xA0, 0xA7,
  17. 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83, 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC,
  18. 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3};
  19. /* -------------------------------------------------------- */
  20. /* ------------------ PRIVATE FUNCTIONS-------------------- */
  21. /* -------------------------------------------------------- */
  22. static uint8_t crc8x_fast(void const *mem, uint16_t len)
  23. {
  24. uint8_t crc = CRC8_INIT_VALUE;
  25. uint8_t const *data = (uint8_t *)mem;
  26. if (data == NULL)
  27. return 0xff;
  28. crc &= 0xff;
  29. while (len--)
  30. crc = crc8x_table[crc ^ *data++];
  31. return crc;
  32. }
  33. inline static void receivePacket(void)
  34. {
  35. nBus.hw_platform->uart_receive(nBus.rx_buffer, 64);
  36. }
  37. inline static void send_response()
  38. {
  39. if (nBus.send_response == SEND_RESPONSE)
  40. {
  41. nBus.tx_buffer[0] -= 1; // prvý bajt sa nepočíta
  42. nBus.hw_platform->uart_transmit(nBus.tx_buffer, nBus.tx_length);
  43. }
  44. nBus.hw_platform->led_off();
  45. }
  46. #if MODULE_MASTER == 1
  47. inline static void receive_slave_response()
  48. {
  49. }
  50. #endif
  51. static nBusCommandType_t get_request_type()
  52. {
  53. nBus.addressModule = nBus.rx_buffer[0];
  54. nBus.sensorInfo = *(const nBus_sensorByte_t *)&nBus.rx_buffer[1];
  55. nBus.function_code = *(const nBus_functionCode_t *)&nBus.rx_buffer[2];
  56. if (nBus.sensorInfo.address != 0 && nBus.addressModule != 0)
  57. {
  58. nBus.request_type = UNICAST_TO_SENSOR;
  59. return UNICAST_TO_SENSOR;
  60. }
  61. if (nBus.sensorInfo.address == 0 && nBus.addressModule != 0)
  62. {
  63. nBus.request_type = UNICAST_TO_MODULE;
  64. return UNICAST_TO_MODULE;
  65. }
  66. if (nBus.sensorInfo.address != 0 && nBus.addressModule == 0)
  67. {
  68. nBus.request_type = BROADCAST_SPECIFIC_SENSORS;
  69. return BROADCAST_SPECIFIC_SENSORS;
  70. }
  71. nBus.request_type = BROADCAST_GLOBAL;
  72. return BROADCAST_GLOBAL;
  73. }
  74. static void process_request()
  75. {
  76. nBusCommandType_t request_type = get_request_type();
  77. nBus.send_response = SEND_RESPONSE;
  78. nBus.tx_buffer[0] = 0;
  79. nBus.tx_buffer[1] = nBus.rx_buffer[0]; // Module address
  80. nBus.tx_buffer[2] = nBus.rx_buffer[1]; // Sensor address
  81. uint8_t crcC = crc8x_fast(nBus.rx_buffer, nBus.rx_length - 1);
  82. if (crcC != nBus.rx_buffer[nBus.rx_length - 1])
  83. {
  84. nBus.send_response = NO_RESPONSE;
  85. return;
  86. }
  87. #if MODULE_SLAVE == 1
  88. // spracovanie broadcast komunikacie
  89. if ((request_type == BROADCAST_SPECIFIC_SENSORS || request_type == BROADCAST_GLOBAL))
  90. {
  91. nbus_slave_broadcast(&nBus, request_type);
  92. return;
  93. }
  94. #endif
  95. // paket nie je adresovany tomuto modulu
  96. if (nBus.addressModule != MODULE_ADDRESS)
  97. {
  98. nBus.send_response = NO_RESPONSE;
  99. return;
  100. }
  101. nBus.function_code.error = 0;
  102. nBus.tx_length = META_SIZE;
  103. #if MODULE_SLAVE == 1
  104. if (nBus.function_code.notReadWrite == REQUEST_GET)
  105. {
  106. if (request_type == UNICAST_TO_SENSOR)
  107. {
  108. nbus_slave_unicastToSensorGet(&nBus);
  109. }
  110. if (request_type == UNICAST_TO_MODULE)
  111. {
  112. nbus_slave_unicastToModuleGet(&nBus);
  113. }
  114. }
  115. else
  116. {
  117. // else request is REQUEST_SET
  118. if (request_type == UNICAST_TO_SENSOR)
  119. {
  120. nbus_slave_unicastToSensorSet(&nBus);
  121. }
  122. if (request_type == UNICAST_TO_MODULE)
  123. {
  124. nbus_slave_unicastToModuleSet(&nBus);
  125. }
  126. }
  127. nBus.tx_buffer[3] = *(uint8_t *)&nBus.function_code;
  128. nBus.tx_buffer[nBus.tx_length - 1] = crc8x_fast(&nBus.tx_buffer[1], nBus.tx_length - 2);
  129. nBus.tx_buffer[0] = nBus.tx_length;
  130. #endif
  131. #if MODULE_MASTER == 1
  132. if (nBus.function_code.notReadWrite == REQUEST_GET)
  133. {
  134. nbus_master_unicastToModuleGet(&nBus);
  135. }
  136. else
  137. {
  138. nbus_master_unicastToModuleSet(&nBus);
  139. }
  140. #endif
  141. }
  142. static void nbus_blink_LED(uint8_t delay)
  143. {
  144. nBus.hw_platform->led_on();
  145. nBus.hw_platform->delay_ms(delay);
  146. nBus.hw_platform->led_off();
  147. nBus.hw_platform->delay_ms(delay);
  148. nBus.hw_platform->led_on();
  149. nBus.hw_platform->delay_ms(delay);
  150. nBus.hw_platform->led_off();
  151. nBus.hw_platform->delay_ms(delay);
  152. }
  153. /* -------------------------------------------------------- */
  154. /* ----------------------- CALLBACKS----------------------- */
  155. /* -------------------------------------------------------- */
  156. /**
  157. * @brief UART receive complete.
  158. * This callback have to valled from application, when RX data is ready.
  159. * @param int size Size of received packet
  160. * Received packet is located in uBus.rx_buffer
  161. */
  162. void nbus_cb_UART_RX(int size)
  163. {
  164. nBus.rx_length = size;
  165. nBus.uart_state = UART_RX_RECEIVED;
  166. }
  167. /* -------------------------------------------------------- */
  168. /* ------------------ PUBLIC FUNCTIONS-------------------- */
  169. /* -------------------------------------------------------- */
  170. /**
  171. * @brief Initialize of nBus stack
  172. * @param interface Driver for module application.
  173. * Every application have to implement base functions as Init,
  174. * Reset, GetData, SetData, GetParam, SetParam, .... @see nBusAppInterface_t
  175. * These are application dependent functions.
  176. * @param hw Application level implementation of base functions (uart_receive,
  177. * uart_transmit, led_on/off/toggle, ...). These are MCU dependent functions.
  178. */
  179. void nbus_init(nBusAppInterface_t *interface, nBusPlatformInterface_t *hw)
  180. {
  181. nBus.hw_platform = hw;
  182. nBus.rx_length = 0;
  183. nBus.data_timebase = 0;
  184. nBus.measure_active = MEASURE_STOPPED;
  185. nBus.uart_state = UART_RX_WAIT;
  186. nBus.interface = interface;
  187. receivePacket();
  188. }
  189. /**
  190. * @brief Initialize concrete application, if it is needed.
  191. * This function call "init()" function from nBusPlatformInterface_t, and this
  192. * function is implemented in concrete application.
  193. * @param hw_interface Pointer to hardware definition structure. In STM32 it can
  194. * be hSPI, hUART, hADC, ...
  195. * @param hw_config configuration for hardware structure object.
  196. */
  197. void nbus_init_app(void *hw_interface, void *hw_config)
  198. {
  199. nBus.interface->init(hw_interface, hw_config);
  200. }
  201. /**
  202. * @brief Init memory driver for storing module/sensor parameters.
  203. * Implementation of memory driver is independent from nBus. To provide
  204. * nonvolatile parameters store, is needed implement this driver.
  205. * @param memDriver Memory driver for bas operation: read/write 1/2/4 byte
  206. * from/to memory
  207. * @todo implement capacity parameter
  208. */
  209. void nbus_init_memory_driver(nBus_MemoryDriver *memDriver)
  210. {
  211. nbus_memory_init(memDriver);
  212. nBus.memoryInterface = getnbusMemoryInterface();
  213. nbus_blink_LED(100);
  214. nBus.memoryInterface->readHeaderData();
  215. uint8_t *params = nbus_interface_allParams();
  216. uint8_t paramCnt = nbus_interface_allParamsCount();
  217. uint32_t paramValue;
  218. for (uint32_t index = 1; index <= nBus.interface->getSensorCount(); index++)
  219. {
  220. for (int paramIndex = 0; paramIndex < paramCnt; paramIndex++)
  221. {
  222. if (nbus_is_param_active(index, params[paramIndex]))
  223. {
  224. if (nBus.interface->hasParam(index, params[paramIndex]))
  225. {
  226. paramValue = nbus_memory_read_param(index, params[paramIndex]);
  227. nBus.interface->setParam(index, params[paramIndex], paramValue);
  228. }
  229. }
  230. }
  231. }
  232. }
  233. /**
  234. * @brief Run protocol stack.
  235. * This is infinity protocol loop.
  236. * When stack is started (or reset) it blink as boot sign.
  237. *
  238. * Content of loop:
  239. * - if data was received: process request. Determine addressee and type of
  240. * request
  241. * - execute request or discard request
  242. * - send response (only for unicast requests)
  243. *
  244. * In each iteration, the state of application flags are performed. The state of
  245. * application is noticed from loop_callback() (if it is defined). Meaning of
  246. * return values:
  247. * - 0 - No event occurs,
  248. * - 1 - data from connected sensors are prepared, it will be read with read()
  249. * function automatically.
  250. * - 2 - communication error/timeout. The reception of packed process will be
  251. * reset.
  252. */
  253. void nbus_stack(void)
  254. {
  255. nbus_blink_LED(50);
  256. while (1)
  257. {
  258. if (nBus.uart_state == UART_RX_RECEIVED)
  259. {
  260. process_request();
  261. nBus.uart_state = UART_RX_WAIT;
  262. send_response();
  263. #if MODULE_MASTER == 1
  264. receive_slave_response();
  265. #endif
  266. }
  267. if (nBus.hw_platform->loop_callback != NULL)
  268. {
  269. switch (nBus.hw_platform->loop_callback())
  270. {
  271. case 1:
  272. nBus.interface->read();
  273. break;
  274. case 2:
  275. nBus.uart_state = UART_RX_WAIT;
  276. break;
  277. }
  278. }
  279. }
  280. }